

	
3GPP TSG-SA5 Meeting #150 	S5-236012
Goteborg, Sweden, 21 - 25 August 2023

	CR-Form-v12.1

	CHANGE REQUEST

	

	
	32.156
	CR
	0074
	rev
	-
	Current version:
	18.2.2
	

	

	[bookmark: _Hlt497126619]For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	[bookmark: OLE_LINK1]X
	Core Network
	X

	

	Title:	
	[bookmark: OLE_LINK5][bookmark: OLE_LINK2]Rel-18 CR TS 32.156 Supplement the specification for establishing a relationship between <<dataType>> and model elements in UML class diagram

	
	

	Source to WG:
	China Mobile Com. Corporation,

	Source to TSG:
	S5

	
	

	Work item code:
	TEI18
	
	Date:
	2023-08-11

	
	
	
	
	

	Category:
	C
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	[bookmark: OLE_LINK3][bookmark: OLE_LINK4]In the current version of 3GPP TS 32.156, there is a clear explanation and specification on how to use UML class diagrams to describe the relationship between classes (see 5.2 in 3GPP TS 32.156). However, <<dataType>> represent an attribute property type, there is no clear normative description in the current version of how the relationship between <<dataType>> and other model elements or multiple <<dataType>> is shown in the UML class diagrams.
Therefore, in view of the above problems, we propose to supplement the normative description of <<dataType>> in 5.3.4.1 of 3GPP TS 32.156 to ensure its standardization in practical use.

	
	

	Summary of change:
	This CR proposes to supplement the specification for establishing a relationship between <<dataType>> and model elements in 5.3.4.1

	T
	

	Consequences if not approved:
	When the relationship between <<dataType>> and model elements needs to be described in the UML diagram, there is no explicit usage specification.

	
	

	Clauses affected:
	5.3.4.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	S5-236012 (revision of S5-235556)

	1st Change

[bookmark: _Toc122615083][bookmark: _Toc106192967][bookmark: _Toc138061471]5.3.4.1	Description
It represents an attribute property type (see Table 5.2.1.1-1: Attribute properties).
The <<dataType>> can establish relationships with other model elements in class diagram, and relationships can be established between multiple <<dataType>> .
[bookmark: _GoBack]This repertoire uses two kinds of data types: predefined data types and user-defined data types. The former is defined in subclause 5.4.3. The latter is defined by the specifications by authors using a <<dataType>> model element.
The names of predefined data types and user-defined data types must be chosen such that they do not clash.
User-defined data types can be simple types containing one or more values of a single simple type like integer or string or they can be structured types containing one or more named attribute fields each having properties similar to an attribute as described in table 5.2.1.1-1. The individual attribute fields may have different property values e.g., different types, multiplicity or supportQualifier. A named attribute field itself can be of a simple or a structured data type.
Structured data types could be embedded in any depth; however, they should not be embedded more than 3 levels, that is attribute-structuredType-structuredType-structuredType-simpletype. Reasons for avoiding deep embedding of structured types include:
- Any construct that would be modeled by such deep structures can be modeled partly of fully by IOCs instead, thus avoiding deep structures.
- It is difficult to understand deep structured types, it is hard to follow their "type containment".
- Addressing in most contexts is based on Distinguished Names which does not allow addressing individual attribute fields.
- Filtering of attribute fields becomes complex.
- Usability problems on any human interface (GUI, CLI).
The user-defined data types support the modelling of structured data types (see <<dataType>> PLMNId in 5.3.4.2).
When an attribute is of a structured data type, attribute properties may be declared on multiple levels: declared for the attribute as a whole and also for each attribute field. As an attributed field itself may be of a structured data type, properties may be declared on 2, 3 or more levels.
"Documentation” is relevant on the attribute or attribute field level where it is declared. Properties "multiplicity", "isOrdered", "isUnique", "type" and "allowedValues" are always relevant and should be enforced on the attribute or attribute field level where they are declared.
The property "supportQualifier" always applies to the level where it is declared. However, the support for a model element is always conditional on the support of the higher level. E.g., if an attribute is optional but one of its fields is mandatory, that means the field is mandatory if the attribute itself is supported; if the attribute is not supported this results in none of its fields(subparts) being supported.
For properties "isReadable", "isWritable", "isNotifyable" the following rules apply:
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields (if any).
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields if and only if True is also specified for all of them.
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields until a False value is specified for an attribute field. This attribute field and all (descendant) attribute fields shall have a False value.
For the "isInvariant" property the following rules apply:
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields (if any).
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields if and only if False is also specified for all of them.
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields until a True value is specified for an attribute field. This attribute field and all (descendant) attribute fields shall have a True value.
If an attribute has the property lifecycleStatus=Deprecated all its fields are are also deprecated. If a data type has property lifecycleStatus=Deprecated all its fields (subparts) are also deprecated.
When a user-defined or predefined data type is used to apply type (see property named type in Table 5.2.1.1‑1: Attribute properties) information to a class attribute, the data type name is shown along with the class attribute. See Example below.
	End of Changes

