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[bookmark: _Toc122615083][bookmark: _Toc106192967][bookmark: _Toc138061471]5.3.4.1	Description
It represents an attribute property type (see Table 5.2.1.1-1: Attribute properties).
The <<dataType>> can establish relationships with other model elements in class diagram, and relationships can be established between multiple <<dataType>> .
[bookmark: _GoBack]This repertoire uses two kinds of data types: predefined data types and user-defined data types. The former is defined in subclause 5.4.3. The latter is defined by the specifications by authors using a <<dataType>> model element. 
The names of predefined data types and user-defined data types must be chosen such that they do not clash.
User-defined data types can be simple types containing one or more values of a single simple type like integer or string or they can be structured types containing one or more named attribute fields each having properties similar to an attribute as described in table 5.2.1.1-1. The individual attribute fields may have different property values e.g., different types, multiplicity or supportQualifier. A named attribute field itself can be of a simple or a structured data type. 
Structured data types could be embedded in any depth; however, they should not be embedded more than 3 levels, that is attribute-structuredType-structuredType-structuredType-simpletype. Reasons for avoiding deep embedding of structured types include:
- Any construct that would be modeled by such deep structures can be modeled partly of fully by IOCs instead, thus avoiding deep structures.
- It is difficult to understand deep structured types, it is hard to follow their "type containment".
- Addressing in most contexts is based on Distinguished Names which does not allow addressing individual attribute fields.
- Filtering of attribute fields becomes complex.
- Usability problems on any human interface (GUI, CLI).
The user-defined data types support the modelling of structured data types (see <<dataType>> PLMNId in 5.3.4.2). 
When an attribute is of a structured data type, attribute properties may be declared on multiple levels: declared for the attribute as a whole and also for each attribute field. As an attributed field itself may be of a structured data type, properties may be declared on 2, 3 or more levels.
"Documentation” is relevant on the attribute or attribute field level where it is declared. Properties "multiplicity", "isOrdered", "isUnique", "type" and "allowedValues" are always relevant and should be enforced on the attribute or attribute field level where they are declared.
The property "supportQualifier" always applies to the level where it is declared. However, the support for a model element is always conditional on the support of the higher level. E.g., if an attribute is optional but one of its fields is mandatory, that means the field is mandatory if the attribute itself is supported; if the attribute is not supported this results in none of its fields(subparts) being supported.
For properties "isReadable", "isWritable", "isNotifyable" the following rules apply:
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields (if any).
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields if and only if True is also specified for all of them.
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields until a False value is specified for an attribute field. This attribute field and all (descendant) attribute fields shall have a False value.
For the "isInvariant" property the following rules apply:
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields (if any).
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields if and only if False is also specified for all of them.
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields until a True value is specified for an attribute field. This attribute field and all (descendant) attribute fields shall have a True value.
If an attribute has the property lifecycleStatus=Deprecated all its fields are are also deprecated. If a data type has property lifecycleStatus=Deprecated all its fields (subparts) are also deprecated.
When a user-defined or predefined data type is used to apply type (see property named type in Table 5.2.1.1‑1: Attribute properties) information to a class attribute, the data type name is shown along with the class attribute. See Example below.
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